首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >An Evaluation of Model-Based Approaches to Sensor Data Compression
【24h】

An Evaluation of Model-Based Approaches to Sensor Data Compression

机译:基于模型的传感器数据压缩方法的评估

获取原文
获取原文并翻译 | 示例

摘要

As the volumes of sensor data being accumulated are likely to soar, data compression has become essential in a wide range of sensor-data applications. This has led to a plethora of data compression techniques for sensor data, in particular model-based approaches have been spotlighted due to their significant compression performance. These methods, however, have never been compared and analyzed under the same setting, rendering a "right" choice of compression technique for a particular application very difficult. Addressing this problem, this paper presents a benchmark that offers a comprehensive empirical study on the performance comparison of the model-based compression techniques. Specifically, we reimplemented several state-of-the-art methods in a comparable manner, and measured various performance factors with our benchmark, including compression ratio, computation time, model maintenance cost, approximation quality, and robustness to noisy data. We then provide in-depth analysis of the benchmark results, obtained by using 11 different real data sets consisting of 346 heterogeneous sensor data signals. We believe that the findings from the benchmark will be able to serve as a practical guideline for applications that need to compress sensor data.
机译:由于累积的传感器数据量可能会飙升,因此数据压缩已在各种传感器数据应用程序中变得至关重要。这导致了传感器数据的大量数据压缩技术,特别是基于模型的方法由于其显着的压缩性能而备受关注。但是,从未在相同的设置下对这些方法进行比较和分析,这使得针对特定应用的压缩技术的“正确”选择非常困难。为了解决这个问题,本文提出了一个基准,该基准提供了基于模型的压缩技术的性能比较的全面的经验研究。具体来说,我们以可比的方式重新实现了几种最先进的方法,并以我们的基准测试了各种性能因素,包括压缩率,计算时间,模型维护成本,近似质量和对噪声数据的鲁棒性。然后,我们通过使用由346个异构传感器数据信号组成的11个不同的真实数据集,对基准测试结果进行深入分析。我们认为,基准测试的结果将可以作为需要压缩传感器数据的应用的实用指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号