首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus
【24h】

Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus

机译:使用情感敏感词库的跨域情感分类

获取原文
获取原文并翻译 | 示例

摘要

Automatic classification of sentiment is important for numerous applications such as opinion mining, opinion summarization, contextual advertising, and market analysis. Typically, sentiment classification has been modeled as the problem of training a binary classifier using reviews annotated for positive or negative sentiment. However, sentiment is expressed differently in different domains, and annotating corpora for every possible domain of interest is costly. Applying a sentiment classifier trained using labeled data for a particular domain to classify sentiment of user reviews on a different domain often results in poor performance because words that occur in the train (source) domain might not appear in the test (target) domain. We propose a method to overcome this problem in cross-domain sentiment classification. First, we create a sentiment sensitive distributional thesaurus using labeled data for the source domains and unlabeled data for both source and target domains. Sentiment sensitivity is achieved in the thesaurus by incorporating document level sentiment labels in the context vectors used as the basis for measuring the distributional similarity between words. Next, we use the created thesaurus to expand feature vectors during train and test times in a binary classifier. The proposed method significantly outperforms numerous baselines and returns results that are comparable with previously proposed cross-domain sentiment classification methods on a benchmark data set containing Amazon user reviews for different types of products. We conduct an extensive empirical analysis of the proposed method on single- and multisource domain adaptation, unsupervised and supervised domain adaptation, and numerous similarity measures for creating the sentiment sensitive thesaurus. Moreover, our comparisons against the SentiWordNet, a lexical resource for word polarity, show that the created sentiment-sensitive thesaurus accurately captures words that express similar s- ntiments.
机译:情绪的自动分类对于诸如意见挖掘,意见摘要,上下文广告和市场分析之类的许多应用很重要。通常,情感分类已被建模为使用注释为正面或负面情绪的评论来训练二元分类器的问题。但是,在不同的领域中表达的情感有所不同,并且为每个可能感兴趣的领域注释语料库非常昂贵。在特定域上应用使用标签数据训练的情感分类器对不同域上的用户评论的情感进行分类,通常会导致效果不佳,因为在火车(源)域中出现的单词可能不会出现在测试(目标)域中。我们提出了一种方法来克服跨领域情感分类中的这一问题。首先,我们使用针对源域的标记数据和针对源域和目标域的未标记数据来创建情绪敏感的分布词库。通过将文档级别的情感标签并入上下文向量中,可以用作词库中的情感敏感度,上下文向量用作测量单词之间分布相似性的基础。接下来,我们使用创建的同义词库在二进制分类器的训练和测试期间扩展特征向量。在包含针对不同类型产品的Amazon用户评论的基准数据集上,所提出的方法明显优于众多基准,并且返回的结果与先前提出的跨域情感分类方法相当。我们对单源和多源域自适应,无监督和有监督域自适应的拟议方法进行了广泛的实证分析,并建立了许多相似的措施来创建情感敏感同义词库。此外,我们与SentiWordNet(一种用于单词极性的词汇资源)的比较表明,创建的对情感敏感的词库可以准确地捕获表达类似情感的单词。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号