首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings
【24h】

Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings

机译:使用情感敏感嵌入的跨域情感分类

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised Cross-domain Sentiment Classification is the task of adapting a sentiment classifier trained on a particular domain (), to a different domain (), without requiring any labeled data for the target domain. By adapting an existing sentiment classifier to previously unseen target domains, we can avoid the cost for manual data annotation for the target domain. We model this problem as embedding learning, and construct three objective functions that capture: (a) distributional properties of (i.e., common features that appear in both source and target domains), (b) label constraints in the source domain documents, and (c) geometric properties in the unlabeled documents in both source and target domains. Unlike prior proposals that first learn a lower-dimensional embedding independent of the source domain sentiment labels, and next a sentiment classifier in this embedding, our joint optimisation method learns embeddings that are sensitive to sentiment classification. Experimental results on a benchmark dataset show that by jointly optimising the three objectives we can obtain better performances in comparison to optimising each objective function separately, thereby demonstrating the importance of task-specific embedding learning for cross-domain sentiment classification. Among the individual objective functions, the best performance is obtained by (c). Moreover, the proposed method reports cross-domain sentiment classification accuracies that are statistically comparable to the current state-of-the-art embedding learning methods for cross-domain sentiment classification.
机译:无监督的跨域情感分类是将在特定域()上训练的情感分类器改编为不同域(),而不需要目标域有任何标记数据的任务。通过使现有的情感分类器适应以前看不见的目标域,我们可以避免为目标域进行人工数据注释的费用。我们将此问题建模为嵌入学习,并构造了三个目标函数来捕获:(a)的分布属性(即,在源域和目标域中都出现的共同特征),(b)源域文档中的标签约束,以及( c)源域和目标域中未标记文档中的几何属性。与先前的建议首先学习独立于源域情感标签的低维嵌入,然后在此嵌入中使用情感分类器不同,我们的联合优化方法学习的是对情感分类敏感的嵌入。在基准数据集上的实验结果表明,与分别优化每个目标函数相比,通过共同优化这三个目标,我们可以获得更好的性能,从而证明了特定于任务的嵌入学习对于跨域情感分类的重要性。在各个目标函数中,通过(c)获得最佳性能。此外,提出的方法报告了跨域情感分类的准确性,这些准确性在统计上可与当前用于跨域情感分类的最新嵌入学习方法相比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号