首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Novel Biobjective Clustering (BiGC) Based on Cooperative Game Theory
【24h】

Novel Biobjective Clustering (BiGC) Based on Cooperative Game Theory

机译:基于合作博弈的新型双目标聚类(BiGC)

获取原文
获取原文并翻译 | 示例

摘要

We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
机译:我们提出了一种新的集群方法。我们的想法是在合作博弈中将集群形成映射到联盟形成,并使用模式的Shapley值来识别集群和集群代表。我们证明了基础博弈是凸的,这导致了一种有效的双目标聚类算法,我们称之为BiGC。该算法针对平均点到中心距离(电位)以及平均集群内点到点距离(散点)产生高质量的聚类。通过在几个基准数据集上使用标准聚类有效性标准进行的详细实验,我们证明了BiGC优于最新的聚类算法(包括基于中心的聚类和多目标技术)。我们还表明,BiGC满足关键的聚类属性,例如顺序独立性,规模不变性和丰富性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号