首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >TW-$(k)$-Means: Automated Two-Level Variable Weighting Clustering Algorithm for Multiview Data
【24h】

TW-$(k)$-Means: Automated Two-Level Variable Weighting Clustering Algorithm for Multiview Data

机译:TW-$(k)$-Means:多视图数据的自动两级可变加权聚类算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes TW-$(k)$-means, an automated two-level variable weighting clustering algorithm for multiview data, which can simultaneously compute weights for views and individual variables. In this algorithm, a view weight is assigned to each view to identify the compactness of the view and a variable weight is also assigned to each variable in the view to identify the importance of the variable. Both view weights and variable weights are used in the distance function to determine the clusters of objects. In the new algorithm, two additional steps are added to the iterative $(k)$-means clustering process to automatically compute the view weights and the variable weights. We used two real-life data sets to investigate the properties of two types of weights in TW-$(k)$-means and investigated the difference between the weights of TW-$(k)$-means and the weights of the individual variable weighting method. The experiments have revealed the convergence property of the view weights in TW-$(k)$-means. We compared TW-$(k)$-means with five clustering algorithms on three real-life data sets and the results have shown that the TW-$(k)$-means algorithm significantly outperformed the other five clustering algorithms in four evaluation indices.
机译:本文提出了TW-$(k)$-means,这是一种用于多视图数据的自动两级变量加权聚类算法,该算法可以同时计算视图和各个变量的权重。在该算法中,将视图权重分配给每个视图以标识视图的紧凑性,并且还将变量权重分配给视图中的每个变量以标识变量的重要性。距离函数中使用视图权重和可变权重来确定对象的簇。在新算法中,$(k)$-迭代聚类过程增加了两个附加步骤,以自动计算视图权重和可变权重。我们使用两个真实的数据集来调查TW-$(k)$-均值中两种类型权重的性质,并调查TW-$(k)$-均值的权重与个人权重之间的差异可变加权法。实验揭示了TW-$(k)$-均值中视图权重的收敛性。我们在三个真实数据集上比较了TW-$(k)$-均值和五个聚类算法,结果表明,在四个评估指标中,TW-$(k)$-means算法明显优于其他五个聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号