首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >A Rough Set-Based Method for Updating Decision Rules on Attribute Values’ Coarsening and Refining
【24h】

A Rough Set-Based Method for Updating Decision Rules on Attribute Values’ Coarsening and Refining

机译:基于粗糙集的属性值粗化与细化决策规则更新方法

获取原文
获取原文并翻译 | 示例

摘要

Rule induction method based on rough set theory (RST) has received much attention recently since it may generate a minimal set of rules from the decision system for real-life applications by using of attribute reduction and approximations. The decision system may vary with time, e.g., the variation of objects, attributes and attribute values. The reduction and approximations of the decision system may alter on Attribute Values’ Coarsening and Refining (AVCR), a kind of variation of attribute values, which results in the alteration of decision rules simultaneously. This paper aims for dynamic maintenance of decision rules AVCR. The definition of minimal discernibility attribute set is proposed firstly, which aims to improve the efficiency of attribute reduction in RST. Then, principles of updating decision rules in case of AVCR are discussed. Furthermore, the rough set-based methods for updating decision rules in the inconsistent decision system are proposed. The complexity analysis and extensive experiments on UCI data sets have verified the effectiveness and efficiency of the proposed methods.
机译:基于粗糙集理论(RST)的规则归纳方法最近受到了很多关注,因为它可以通过使用属性约简和逼近从决策系统中为实际应用生成最小的规则集。决策系统可以随时间变化,例如,对象,属性和属性值的变化。决策系统的约简和近似可能会随着属性值的粗化和细化(AVCR)而发生变化,这是一种属性值的变化,它会导致决策规则同时发生变化。本文旨在动态维护决策规则AVCR。首先提出了最小可辨属性集的定义,旨在提高RST中属性约简的效率。然后,讨论了在AVCR的情况下更新决策规则的原理。此外,提出了基于粗糙集的不一致决策系统中决策规则的更新方法。对UCI数据集的复杂性分析和广泛的实验已经验证了所提出方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号