首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Distributed $k$ -Core View Materializationand Maintenance for Large Dynamic Graphs
【24h】

Distributed $k$ -Core View Materializationand Maintenance for Large Dynamic Graphs

机译:分布式 $ k $ -Core查看大型动态图的实现和维护

获取原文
获取原文并翻译 | 示例

摘要

In graph theory, $k$ -core is a key metric used to identify subgraphs of high cohesion, also known as the ‘dense’ regions of a graph. As the real world graphs such as social network graphs grow in size, the contents get richer and the topologies change dynamically, we are challenged not only to materialize $k$ -core subgraphs for one time but also to maintain them in order to keep up with continuous updates. Adding to the challenge is that real world data sets are outgrowing the capacity of a single server and its main memory. These challenges inspired us to propose a new set of distributed algorithms for $k$ -core view construction and maintenance on a horizontally scaling storage and computing platform. Our algorithms execute against the partitioned graph data in parallel and take advantage of $k$ -core properties to aggressively prune unnecessary computation. Experimental evaluation results demonstrated orders of magnitude speedup and advantages of maintaining $k$ -core incrementally and in batch windows over complete reconstruction. Our algorithms thus enable practitioners to create and maintain many $k$ -core views on different topics in rich social network content si- ultaneously.
机译:在图论中, $ k $ -核心是用于识别具有高内聚力的子图(也称为图的“密集”区域)的关键指标。随着诸如社交网络图之类的现实世界图的大小增长,内容变得更丰富并且拓扑结构动态变化,我们不仅面临着实现 $ k $的挑战。 -核心子图一次,但也要对其进行维护,以便跟上不断更新的步伐。面临的挑战是,现实世界中的数据集正超出单个服务器及其主存储器的容量。这些挑战促使我们为 $ k $ -在水平缩放的存储和计算平台上构建和维护核心视图。我们的算法针对分区图数据并行执行,并利用 $ k $ -核心属性可主动修剪不必要的计算。实验评估结果证明了数量级加速和保持 $ k $ -核心,并在批处理窗口中逐步完成。因此,我们的算法使从业人员可以创建和维护许多 $ k $ -同时在丰富的社交网络内容中对不同主题的核心看法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号