首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Random Projection Random Discretization Ensembles—Ensembles of Linear Multivariate Decision Trees
【24h】

Random Projection Random Discretization Ensembles—Ensembles of Linear Multivariate Decision Trees

机译:随机投影随机离散集成—线性多元决策树的集成

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel ensemble method random projection random discretization ensembles(RPRDE) to create ensembles of linear multivariate decision trees by using a univariate decision tree algorithm. The present method combines the better computational complexity of a univariate decision tree algorithm with the better representational power of linear multivariate decision trees. We develop random discretization (RD) method that creates random discretized features from continuous features. Random projection (RP) is used to create new features that are linear combinations of original features. A new dataset is created by augmenting discretized features (created by using RD) with features created by using RP. Each decision tree of a RPRD ensemble is trained on one dataset from the pool of these datasets by using a univariate decision tree algorithm. As these multivariate decision trees (because of features created by RP) have more representational power than univariate decision trees, we expect accurate decision trees in the ensemble. Diverse training datasets ensure diverse decision trees in the ensemble. We study the performance of RPRDE against other popular ensemble techniques using C4.5 tree as the base classifier. RPRDE matches or outperforms other popular ensemble methods. Experiments results also suggest that the proposed method is quite robust to the class noise.
机译:在本文中,我们提出了一种新的集成方法:随机投影随机离散化集成(RPRDE),通过使用单变量决策树算法来创建线性多元决策树的集成。本方法将单变量决策树算法的更好的计算复杂度与线性多元决策树的更好的表示能力相结合。我们开发了从连续特征创建随机离散特征的随机离散化(RD)方法。随机投影(RP)用于创建新特征,这些新特征是原始特征的线性组合。通过将离散化特征(使用RD创建)扩展为使用RP创建的特征,可以创建新的数据集。通过使用单变量决策树算法,在来自这些数据集的一个数据集上训练RPRD集合的每个决策树。由于这些多变量决策树(由于RP创建的特征)比单变量决策树具有更大的表示能力,因此我们期望集合中的准确决策树。多样化的训练数据集可确保集合中的决策树多种多样。我们使用C4.5树作为基础分类器,研究了RPRDE对其他流行集成技术的性能。 RPRDE匹配或优于其他流行的集成方法。实验结果还表明,该方法对类噪声具有较强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号