首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Learning the Gain Values and Discount Factors of Discounted Cumulative Gains
【24h】

Learning the Gain Values and Discount Factors of Discounted Cumulative Gains

机译:学习折现累积收益的收益值和折现因子

获取原文
获取原文并翻译 | 示例

摘要

Evaluation metric is an essential and integral part of a ranking system. In the past, several evaluation metrics have been proposed in information retrieval and web search, among them Discounted Cumulative Gain (DCG) has emerged as one that is widely adopted for evaluating the performance of ranking functions used in web search. However, the two sets of parameters, the gain values and discount factors, used in DCG are usually determined in a rather ad-hoc way, and their impacts have not been carefully analyzed. In this paper, we first show that DCG is generally not coherent, i.e., comparing the performance of ranking functions using DCG very much depends on the particular gain values and discount factors used. We then propose a novel methodology that can learn the gain values and discount factors from user preferences over rankings, modeled as a special case of learning linear utility functions. We also discuss how to extend our methods to handle tied preference pairs and how to explore active learning to reduce preference labeling. Numerical simulations illustrate the effectiveness of our proposed methods. Moreover, experiments are also conducted over a side-by-side comparison data set from a commercial search engine to validate the proposed methods on real-world data.
机译:评估指标是排名系统必不可少的组成部分。过去,在信息检索和网络搜索中已经提出了几种评估指标,其中折现累积收益(DCG)已经成为一种广泛用于评估网络搜索中使用的排名函数的性能的度量。但是,DCG中使用的两组参数(增益值和折扣因子)通常是以非常特殊的方式确定的,尚未仔细分析它们的影响。在本文中,我们首先证明DCG通常是不连贯的,即使用DCG比较排名函数的性能非常取决于所使用的特定增益值和折扣因子。然后,我们提出了一种新颖的方法,该方法可以从用户对排名的喜好中学习收益值和折扣因子,并被建模为学习线性效用函数的特殊情况。我们还将讨论如何扩展我们的方法来处理捆绑的偏好对,以及如何探索主动学习以减少偏好标签。数值模拟说明了我们提出的方法的有效性。此外,还对来自商业搜索引擎的并排比较数据集进行了实验,以验证对真实数据的建议方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号