首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Event Characterization and Prediction Based on Temporal Patterns in Dynamic Data System
【24h】

Event Characterization and Prediction Based on Temporal Patterns in Dynamic Data System

机译:动态数据系统中基于时间模式的事件表征与预测

获取原文
获取原文并翻译 | 示例

摘要

The new method proposed in this paper applies a multivariate reconstructed phase space (MRPS) for identifying multivariate temporal patterns that are characteristic and predictive of anomalies or events in a dynamic data system. The new method extends the original univariate reconstructed phase space framework, which is based on fuzzy unsupervised clustering method, by incorporating a new mechanism of data categorization based on the definition of events. In addition to modeling temporal dynamics in a multivariate phase space, a Bayesian approach is applied to model the first-order Markov behavior in the multidimensional data sequences. The method utilizes an exponential loss objective function to optimize a hybrid classifier which consists of a radial basis kernel function and a log-odds ratio component. We performed experimental evaluation on three data sets to demonstrate the feasibility and effectiveness of the proposed approach.
机译:本文提出的新方法将多元重构相空间(MRPS)应用于识别动态数据系统中特征或预测异常或事件的多元时间模式。新方法通过结合基于事件定义的数据分类新机制,扩展了基于模糊无监督聚类方法的原始单变量重构相空间框架。除了对多元相空间中的时间动力学建模之外,贝叶斯方法还用于对多维数据序列中的一阶马尔可夫行为进行建模。该方法利用指数损失目标函数来优化混合分类器,该混合分类器由径向基核函数和对数比组成。我们对三个数据集进行了实验评估,以证明该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号