首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A new temporal pattern identification method for characterization and prediction of complex time series events
【24h】

A new temporal pattern identification method for characterization and prediction of complex time series events

机译:一种用于表征和预测复杂时间序列事件的新的时间模式识别方法

获取原文
获取原文并翻译 | 示例

摘要

A new method for analyzing time series data is introduced in this paper. Inspired by data mining, the new method employs time-delayed embedding and identifies temporal patterns in the resulting phase spaces. An optimization method is applied to search the phase spaces for optimal heterogeneous temporal pattern clusters that reveal hidden temporal patterns, which are characteristic and predictive of time series events. The fundamental concepts and framework of the method are explained in detail. The method is then applied to the characterization and prediction, with a high degree of accuracy, of the release of metal droplets from a welder. The results of the method are compared to those from a Time Delay Neural Network and the C4.5 decision tree algorithm.
机译:介绍了一种分析时间序列数据的新方法。受到数据挖掘的启发,该新方法采用了延时嵌入,并识别了结果相空间中的时间模式。应用一种优化方法来搜索相空间,以找到揭示时间序列事件特征和预测结果的隐藏时间模式的最佳异构时间模式簇。详细说明了该方法的基本概念和框架。然后将该方法以很高的准确度应用于表征和预测焊工释放的金属滴。该方法的结果与时延神经网络和C4.5决策树算法的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号