首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Evaluation of Multiclass Novelty Detection Algorithms for Data Streams
【24h】

Evaluation of Multiclass Novelty Detection Algorithms for Data Streams

机译:数据流的多类新颖性检测算法评估

获取原文
获取原文并翻译 | 示例

摘要

Data stream mining is an emergent research area that investigates knowledge extraction from large amounts of continuously generated data, produced by non-stationary distribution. Novelty detection, the ability to identify new or previously unknown situations, is a useful ability for learning systems, especially when dealing with data streams, where concepts may appear, disappear, or evolve over time. There are several studies currently investigating the application of novelty detection techniques in data streams. However, there is no consensus regarding how to evaluate the performance of these techniques. In this study, we propose a new evaluation methodology for multiclass novelty detection in data streams able to deal with: i) unsupervised learning, which generates without an association with the true classes, where one class may be composed of a novelty set, ii) confusion matrix that increases over time, iii) confusion matrix with a column representing examples, i.e., those not explained by the model, and iv) representation of the evaluation measures over time. We propose a new methodology to associate the detected by the algorithm, in an unsupervised fashion, with the true classes. Finally, we evaluate the performance of the proposed methodology through the use of known novelty detection algorithms with artificial and real data sets.
机译:数据流挖掘是一个新兴的研究领域,它研究从非平稳分布产生的大量连续生成的数据中提取知识。新颖性检测(识别新的或以前未知的情况的能力)对于学习系统是一项有用的功能,特别是在处理概念可能随时间出现,消失或发展的数据流时。当前有几项研究正在研究新颖性检测技术在数据流中的应用。但是,关于如何评估这些技术的性能尚未达成共识。在这项研究中,我们为数据流中的多类新颖性检测提出了一种新的评估方法,该方法能够处理:i)无监督学习,这种学习无需与真实类关联就可以生成,其中一个类可能由新颖性集合组成; ii)随时间增加的混淆矩阵; iii)带有代表示例(即模型未解释的示例)的列的混淆矩阵,以及iv)随时间推移评估指标的表示。我们提出了一种新的方法,以无监督的方式将算法检测到的与真实类相关联。最后,我们通过使用已知的带有人工和真实数据集的新颖性检测算法来评估所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号