首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Indexing Earth Mover’s Distance over Network Metrics
【24h】

Indexing Earth Mover’s Distance over Network Metrics

机译:通过网络指标索引地球移动器的距离

获取原文
获取原文并翻译 | 示例

摘要

The Earth Mover’s Distance (EMD) is a well-known distance metric for data represented as probability distributions over a predefined feature space. Supporting EMD-based similarity search has attracted intensive research effort. Despite the plethora of literature, most existing solutions are optimized for feature spaces (e.g., Euclidean space); while in a spectrum of applications, the relationships between features are better captured using networks. In this paper, we study the problem of answering -nearest neighbor (-NN) queries under network-based EMD metrics (NEMD). We propose , a new access method which leverages the network structure of feature space and enables efficient NEMD-based similarity search. Specifically, employs three novel techniques: (i) , a scalable model to estimate the range of -th nearest neighbor under NEMD, (ii) , a structure that efficiently fetches candidates within given range, and (iii) , an incremental filtering mechanism that effectively prunes false positive candidates to save unnecessary computation. Through extensive experiments using both synthetic and real data sets, we confirmed that
机译:推土机的距离(EMD)是一种众所周知的距离度量标准,用于表示数据在预定义特征空间上的概率分布。支持基于EMD的相似性搜索吸引了深入的研究工作。尽管有大量文献,大多数现有解决方案针对特征空间(例如,欧几里得空间)进行了优化。而在一系列应用中,使用网络可以更好地捕获功能之间的关系。在本文中,我们研究了在基于网络的EMD指标(NEMD)下回答最近邻居(-NN)查询的问题。我们提出了一种新的访问方法,该方法利用特征空间的网络结构并实现基于NEMD的高效相似性搜索。具体来说,采用三种新颖的技术:(i)是一种可伸缩模型,用于估计NEMD下第n个最近邻居的范围;(ii)是一种有效提取给定范围内候选对象的结构,而(iii)是一种增量过滤机制,有效修剪假阳性候选对象以节省不必要的计算。通过使用综合和真实数据集进行的广泛实验,我们证实了

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号