首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >SPIRIT: A Tree Kernel-Based Method for Topic Person Interaction Detection
【24h】

SPIRIT: A Tree Kernel-Based Method for Topic Person Interaction Detection

机译:精神:一种基于树核的主题人交互检测方法

获取原文
获取原文并翻译 | 示例

摘要

The development of a topic in a set of topic documents is constituted by a series of person interactions at a specific time and place. Knowing the interactions of the persons mentioned in these documents is helpful for readers to better comprehend the documents. In this paper, we propose a topic person interaction detection method called SPIRIT, which classifies the text segments in a set of topic documents that convey person interactions. We design the rich interactive tree structure to represent syntactic, context, and semantic information of text, and this structure is incorporated into a tree-based convolution kernel to identify interactive segments. Experiment results based on real world topics demonstrate that the proposed rich interactive tree structure effectively detects the topic person interactions and that our method outperforms many well-known relation extraction and protein-protein interaction methods.
机译:一组主题文档中主题的开发由在特定时间和地点的一系列人员交互组成。了解这些文档中提到的人员之间的互动有助于读者更好地理解文档。在本文中,我们提出了一种称为SPIRIT的主题人际互动检测方法,该方法将传达人际互动的一组主题文档中的文本段分类。我们设计了丰富的交互式树结构来表示文本的句法,上下文和语义信息,并将此结构合并到基于树的卷积内核中以识别交互式段。基于现实世界主题的实验结果表明,所提出的丰富的交互树结构可以有效地检测主题人的交互,并且我们的方法优于许多众所周知的关系提取和蛋白质-蛋白质交互方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号