首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Multi-View Unsupervised Feature Selection with Adaptive Similarity and View Weight
【24h】

Multi-View Unsupervised Feature Selection with Adaptive Similarity and View Weight

机译:具有自适应相似度和视图权重的多视图无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

With the advent of multi-view data, multi-view learning has become an important research direction in both machine learning and data mining. Considering the difficulty of obtaining labeled data in many real applications, we focus on the multi-view unsupervised feature selection problem. Traditional approaches all characterize the similarity by fixed and pre-defined graph Laplacian in each view separately and ignore the underlying common structures across different views. In this paper, we propose an algorithm named Multi-view Unsupervised Feature Selection with Adaptive Similarity and View Weight (ASVW) to overcome the above mentioned problems. Specifically, by leveraging the learning mechanism to characterize the common structures adaptively, we formulate the objective function by a common graph Laplacian across different views, together with the sparse -norm constraint designed for feature selection. We develop an efficient algorithm to address the non-smooth minimization problem and prove that the algorithm will converge. To validate the effectiveness of ASVW, comparisons are made with some benchmark methods on real-world datasets. We also evaluate our method in the real sports action recognition task. The experimental results demonstrate the effectiveness of our proposed algorithm.
机译:随着多视图数据的出现,多视图学习已成为机器学习和数据挖掘中的重要研究方向。考虑到在许多实际应用中获取标记数据的难度,我们将重点放在多视图无监督特征选择问题上。传统方法都通过固定和预定义的图拉普拉斯算子分别在每个视图中表征相似性,而忽略了不同视图之间潜在的通用结构。在本文中,我们提出了一种具有自适应相似度和视图权重(ASVW)的多视图无监督特征选择算法,以解决上述问题。具体来说,通过利用学习机制来自适应地描述公共结构,我们通过跨不同视图的公共图拉普拉斯算子以及为特征选择设计的稀疏-范数约束来制定目标函数。我们开发了一种有效的算法来解决非平滑最小化问题,并证明该算法将收敛。为了验证ASVW的有效性,我们使用一些基准方法对真实数据集进行了比较。我们还在真实的运动动作识别任务中评估我们的方法。实验结果证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号