首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Bag-of-Discriminative-Words (BoDW) Representation via Topic Modeling
【24h】

Bag-of-Discriminative-Words (BoDW) Representation via Topic Modeling

机译:通过主题建模的判别词袋(BoDW)表示

获取原文
获取原文并翻译 | 示例

摘要

Many of the words in a given document either deliver facts (objective) or express opinions (subjective), respectively, depending on the topics they are involved in. For example, given a bunch of documents, the word “bug” assigned to the topic “order Hemiptera” apparently remarks one object (i.e., one kind of insects), while the same word assigned to the topic “software” probably conveys a negative opinion. Motivated by the intuitive assumption that different words have varying degrees of discriminative power in delivering the objective sense or the subjective sense with respect to their assigned topics, a model named as discriminatively objective-subjective LDA (dosLDA) is proposed in this paper. The essential idea underlying the proposed dosLDA is that a pair of objective and subjective selection variables are explicitly employed to encode the interplay between topics and discriminative power for the words in documents in a supervised manner. As a result, each document is appropriately represented as “bag-of-discriminativewords” (BoDW). The experiments reported on documents and images demonstrate that dosLDA not only performs competitively over traditional approaches in terms of topic modeling and document classification, but also has the ability to discern the discriminative power of each word in terms of its objective or subjective sense with respect to its assigned topic.
机译:给定文档中的许多单词根据其涉及的主题分别提供事实(客观)或表达观点(主观)。例如,给定一堆文档,将“ bug”一词分配给该主题“半翅目”显然是指一个对象(即一种昆虫),而分配给“软件”主题的同一词可能表达了负面意见。基于直觉的假设,即不同的单词在交付关于其指定主题的客观意义或主观意义上具有不同程度的判别力,本文提出了一种名为辨别客观主观的LDA(dosLDA)的模型。提议的dosLDA的基本思想是明确采用一对客观选择变量和主观选择变量,以监督方式对主题之间的相互作用和文档中单词的判别能力进行编码。结果,每个文档被适当地表示为“区分词袋”(BoDW)。在文档和图像上报告的实验表明,dosLDA不仅在主题建模和文档分类方面比传统方法更具竞争优势,而且还具有辨别每个单词相对于主观或主观意义的辨别力的能力。它分配的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号