首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting
【24h】

Feature Constrained Multi-Task Learning Models for Spatiotemporal Event Forecasting

机译:时空事件预测的功能受限多任务学习模型

获取原文
获取原文并翻译 | 示例

摘要

Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection) address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each location, thus improving the forecasting performance. The new model combines both static features derived from a predefined vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And, efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the effectiveness and efficiency of our proposed approach.
机译:来自社交媒体的空间事件预测可能非常有用,但会遭受严峻挑战,例如特征(关键字)的动态模式和地理异质性(例如,空间相关性,不平衡的样本以及不同位置的不同人群)。大多数现有方法(例如LASSO回归,动态查询扩展和突发检测)解决了其中一些但并非全部挑战。在这里,我们提出了一个新颖的多任务学习框架,旨在同时解决所有挑战。具体地,给定位置(例如,城市)的集合,通过提取并利用有效地增加每个位置的样本大小的适当共享信息,同时为所有位置建立预测模型,从而改善了预测性能。新模型在多任务功能学习框架中结合了领域专家从预定义词汇中衍生的静态功能和从动态查询扩展中生成的动态功能。还研究了平衡静态和动态项之间同质性和多样性的不同策略。并且,开发了基于迭代组硬阈值的高效算法以实现有效的模型训练和预测。对来自内乱和流感爆发数据集的Twitter数据进行的广泛实验评估证明了我们提出的方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号