首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters
【24h】

Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters

机译:释放作者权力:利用辅助作者-高音之间的关系来预测关键高音

获取原文
获取原文并翻译 | 示例

摘要

Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.
机译:在微博网站上,转发是信息传播的强大动力。但是,确定消息的最有效的高音喇叭(称为“关键高音喇叭预测”问题)已成为一个重要的研究课题。常规方法从两个主要方面解决了该主题:通过分析微博用户的个人属性或用户图网络的结构。但是,根据社会学研究结果,作者-高音扬声器的依赖关系在影响消息传播方面也起着至关重要的作用。在本文中,我们提出了一个新颖的模型,通过整合推特作者和潜在推特者之间的辅助关系来解决关键的推特人预测问题。在不失一般性的前提下,我们根据四个关系因素来表述关系:状态关系,时间关系,位置关系和交互关系。此外,我们提出了一种新颖的方法,称为“基于关系的等级学习(RL2R)”,可以通过根据潜在的中继器的可传播性对其进行排名来确定给定中继器的关键中继器。实验结果表明,在top-k高音喇叭预测中,我们的方法优于最新算法,相对平均改进幅度达到19.7-29.4%。这些发现为理解社交媒体上的用户行为提供了新的见解,从而达到了关键的高音喇叭预测目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号