首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Addressing the Practical Limitations of Noisy-OR Using Conditional Inter-Causal Anti-Correlation with Ranked Nodes
【24h】

Addressing the Practical Limitations of Noisy-OR Using Conditional Inter-Causal Anti-Correlation with Ranked Nodes

机译:使用带排序节点的条件因果间反相关来解决Noises-OR的实际限制

获取原文
获取原文并翻译 | 示例

摘要

Numerous methods have been proposed to simplify the problem of eliciting complex conditional probability tables in Bayesian networks. One of the most popular methods -"Noisy-OR"-approximates the required relationship in many real-world situations between a set of variables that are potential causes of an effect variable. However, the Noisy-OR function has the conditional inter-causal independence (CII) property which means that 'explaining away' behavior-one of the most powerful benefits of BN inference-is not present when the effect variable is observed as false. Hence, for many real-world problems where the Noisy-OR has been used or proposed, it may be deficient as an approximation of the required relationship. However, there is a very simple alternative solution, namely to define the variables as ranked nodes and to use the ranked node weighted average function. This does not have the CII property-instead, we prove it has the conditional anti-correlation property required to ensure that explaining away works in all cases. Moreover, ranked node variables are not restricted to binary states, and hence provide a more comprehensive and general solution to Noisy-OR in all cases.
机译:已经提出了许多方法来简化在贝叶斯网络中引起复杂的条件概率表的问题。最流行的方法之一-“ Noisy-OR ”-逼近一组变量之间的实际关系,这些变量是影响效果变量的潜在原因。但是,Noisy-OR函数具有条件因果间独立性(CII)属性,这意味着当观察到效果变量为假时,不存在“解释”行为(BN推断的最强大好处之一)。因此,对于已使用或提出了Noisy-OR的许多实际问题,作为所需关系的近似值,它可能是不足的。但是,有一个非常简单的替代解决方案,即将变量定义为排名节点并使用排名节点加权平均函数。它没有CII属性,而是证明它具有确保在所有情况下都能解释工作所需的条件性反相关属性。此外,排名的节点变量不限于二进制状态,因此在所有情况下都为Noisy-OR提供了更全面和通用的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号