首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Improving Construction of Conditional Probability Tables for Ranked Nodes in Bayesian Networks
【24h】

Improving Construction of Conditional Probability Tables for Ranked Nodes in Bayesian Networks

机译:改进贝叶斯网络中排序节点的条件概率表的构建

获取原文
获取原文并翻译 | 示例

摘要

This paper elaborates on the ranked nodes method (RNM) that is used for constructing conditional probability tables (CPTs) for Bayesian networks consisting of a class of nodes called ranked nodes. Such nodes typically represent continuous quantities that lack well-established interval scales and are hence expressed by ordinal scales. Based on expert elicitation, the CPT of a child node is generated in RNM by aggregating weighted states of parent nodes with a weight expression. RNM is also applied to nodes that are expressed by interval scales. However, the use of the method in this way may be ineffective due to challenges which are not addressed in the existing literature but are demonstrated through an illustrative example in this paper. To overcome the challenges, the paper introduces a novel approach that facilitates the use of RNM. It consists of guidelines concerning the discretization of the interval scales into ordinal ones and the determination of a weight expression and weights based on assessments of the expert about the mode of the child node. The determination is premised on interpretations and feasibility conditions of the weights derived in the paper. The utilization of the approach is demonstrated with the illustrative example throughout the paper.
机译:本文详细介绍了排序节点方法(RNM),该方法用于构造贝叶斯网络的条件概率表(CPT),贝叶斯网络由一类称为排序节点的节点组成。这样的节点通常表示连续的量,这些连续量缺少完善的间隔标度,因此用序数标度表示。基于专家的启发,通过使用权重表达式聚合父节点的加权状态,在RNM中生成子节点的CPT。 RNM也适用于由间隔比例表示的节点。但是,由于现有文献中未解决但通过本文中的示例说明的挑战,以这种方式使用该方法可能无效。为了克服这些挑战,本文引入了一种新颖的方法来促进RNM的使用。它由有关将间隔标度离散化为序数标度以及根据专家对子节点模式的评估来确定权重表示和权重的准则组成。确定是基于对本文得出的权重的解释和可行性条件。整篇论文中的说明性示例演示了该方法的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号