首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Engineering Methods for Differentially Private Histograms: Efficiency Beyond Utility
【24h】

Engineering Methods for Differentially Private Histograms: Efficiency Beyond Utility

机译:差分专用直方图的工程方法:效用之外的效用

获取原文
获取原文并翻译 | 示例

摘要

Publishing histograms with epsilon-differential privacy has been studied extensively in the literature. Existing schemes aim at maximizing the utility of the published data, while previous experimental evaluations analyze the privacy/utility trade-off. In this paper, we provide the first experimental evaluation of differentially private methods that goes beyond utility, emphasizing also on another important aspect, namely efficiency. Towards this end, we first observe that all existing schemes are comprised of a small set of common blocks. We then optimize and choose the best implementation for each block, determine the combinations of blocks that capture the entire literature, and propose novel block combinations. We qualitatively assess the quality of the schemes based on the skyline of efficiency and utility, i.e., based on whether a method is dominated on both aspects or not. Using exhaustive experiments on four real datasets with different characteristics, we conclude that there are always trade-offs in terms of utility and efficiency. We demonstrate that the schemes derived from our novel block combinations provide the best trade-offs for time critical applications. Our work can serve as a guide to help practitioners engineer a differentially private histogram scheme depending on their application requirements.
机译:在文献中已经广泛研究了发布具有ε-微分隐私的直方图。现有方案旨在最大化已发布数据的效用,而先前的实验评估则分析了隐私/效用之间的权衡。在本文中,我们提供了超出实用性的差分私有方法的第一个实验评估,同时还强调了另一个重要方面,即效率。为此,我们首先观察到所有现有方案都由一小部分通用模块组成。然后,我们为每个块优化并选择最佳实现,确定捕获整个文献的块组合,并提出新颖的块组合。我们基于效率和实用性的天际线,即基于一种方法是否在两个方面都占主导地位,对方案的质量进行定性评估。通过对四个具有不同特征的真实数据集进行详尽的实验,我们得出结论,在效用和效率方面始终存在取舍。我们证明了从我们新颖的模块组合中得出的方案为时间紧迫的应用提供了最佳的权衡。我们的工作可以作为指导,以帮助从业者根据其应用需求设计差分私人直方图方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号