首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >NAIS: Neural Attentive Item Similarity Model for Recommendation
【24h】

NAIS: Neural Attentive Item Similarity Model for Recommendation

机译:NAIS:神经注意项目相似性推荐模型

获取原文
获取原文并翻译 | 示例

摘要

Item-to-item collaborative filtering (aka.item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM) [1] , our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems.
机译:项到项协作过滤(也称为基于项的CF)由于其可解释性和实时个性化效率而长期用于工业环境中的推荐系统。它将用户的个人资料作为其历史交互项来构建,并推荐与该用户的个人资料相似的新项。这样,基于项目的CF方法的关键在于项目相似性的估计。早期方法使用诸如余弦相似度和皮尔森系数之类的统计量来估计项目相似度,但由于缺乏针对推荐任务的量身定制的优化,因此准确性较低。近年来,一些工作尝试通过将相似性表示为基础模型并通过优化建议感知的目标函数来估计模型参数,从而从数据中学习项目相似性。尽管已做出大量努力来使用浅层线性模型来学习项目相似性,但针对基于项目的CF探索非线性神经网络模型的工作却相对较少。在这项工作中,我们为基于项目的CF提出了一个名为神经注意项目相似度模型(NAIS)的神经网络模型。我们设计NAIS的关键是关注网络,该网络能够区分用户个人资料中的哪些历史项目对于预测而言更为重要。与基于最新项的CF方法“因果相似度模型”(FISM)[1]相比,我们的NAIS具有更强的表示能力,而注意力网络仅带来了一些附加参数。在两个公开基准上进行的大量实验证明了NAIS的有效性。这项工作是为基于项目的CF设计神经网络模型的首次尝试,为神经推荐系统的未来开发开辟了新的研究可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号