首页> 外文期刊>IEEE Transactions on Information Theory >Lower and upper bounds on the minimum mean-square error in composite source signal estimation
【24h】

Lower and upper bounds on the minimum mean-square error in composite source signal estimation

机译:复合源信号估计中最小均方误差的上下限

获取原文
获取原文并翻译 | 示例

摘要

The performance of a minimum mean-square error (MMSE) estimator for the output signal from a composite source model (CSM), which has been degraded by statistically independent additive noise, is analyzed for a wide class of discrete-time and continuous-time models. In both cases, the MMSE is decomposed into the MMSE of the estimator, which is informed of the exact states of the signal and noise, and an additional error term. This term is tightly upper and lower bounded. The bounds for the discrete-time signals are developed using distribution tilting and Shannon's lower bound on the probability of a random variable exceeding a given threshold. The analysis for the continuous-time signal is performed using Duncan's theorem. The bounds in this case are developed by applying the data processing theorem to sampled versions of the state process and its estimate, and by using Fano's inequality. The bounds in both cases are explicitly calculated for CSMs with Gaussian subsources. For causal estimation, these bounds approach zero harmonically as the duration of the observed signals approaches infinity.
机译:针对广泛的离散时间和连续时间类别,分析了复合源模型(CSM)的输出信号的最小均方误差(MMSE)估计器的性能,该估计值已因统计上独立的加性噪声​​而降低。楷模。在这两种情况下,MMSE都分解为估计器的MMSE,该估计器被告知信号和噪声的确切状态以及附加的误差项。该术语上下限紧密。离散时间信号的界限是使用分布倾斜和Shannon的下限(随机变量超过给定阈值的概率)得出的。使用邓肯定理对连续时间信号进行分析。通过将数据处理定理应用于状态过程及其估计的采样版本并使用Fano不等式,可以确定这种情况下的界​​限。两种情况下的界​​限都是针对具有高斯子源的CSM明确计算的。对于因果估计,当观察到的信号的持续时间接近无穷大时,这些边界谐波接近于零。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号