首页> 外文期刊>IEEE Transactions on Information Theory >Asymptotic results for maximum likelihood estimation with an array of sensors
【24h】

Asymptotic results for maximum likelihood estimation with an array of sensors

机译:传感器阵列的最大似然估计的渐近结果

获取原文
获取原文并翻译 | 示例

摘要

In many cases, the maximum likelihood (ML) estimator is consistent and asymptotically normal with covariance equal to the inverse of the Fisher's information matrix. It does not follow, though, that the covariance of the ML estimator approaches the Cramer-Rao lower bound as the sample size increases. However, it is possible to draw such a conclusion for the adaptive array problem in which direction of arrival and signal magnitude are being estimated. Proofs of w-asymptotic efficiency, which comes with a convergence-of-moments condition, and strong consistency (almost-sure convergence) of the ML estimator are given. Strong consistency is also proved for a popular quasi-ML estimator.
机译:在许多情况下,最大似然(ML)估计量是一致的,并且渐近正态,协方差等于Fisher信息矩阵的逆。但是,随着样本量的增加,ML估计量的协方差不会接近Cramer-Rao下界。然而,有可能针对估计到达方向和信号幅度的自适应阵列问题得出这样的结论。给出了具有矩收敛条件的w渐近效率的证明,以及ML估计的强一致性(几乎确定的收敛)。流行的准ML估计器也证明了强一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号