首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Maximum likelihood estimation and Cramer-Rao bounds for direction of arrival parameters of a large sensor array
【24h】

Maximum likelihood estimation and Cramer-Rao bounds for direction of arrival parameters of a large sensor array

机译:大型传感器阵列的到达方向参数的最大似然估计和Cramer-Rao边界

获取原文
获取原文并翻译 | 示例

摘要

A maximum likelihood (ML) method is developed for estimation of direction of arrival (DOA) and associated parameters of narrowband signals based on the Taylor's series expansion of the inverse of the data covariance matrix R for large M, M specifying number of sensors in the array. The stochastic ML criterion function can thus be simplified resulting in a computationally efficient algorithm for DOA estimation. The more important result is the derivation of asymptotic (large M) expressions for the Cramer-Rao lower bound (CRB) on the covariance matrix of all unknown DOA angles for the general D source case. The derived bound is expressed explicitly as a function of snapshots, signal-to-noise ratio (SNR), sensors, separation, and correlation between signal sources. Using the condition of positive definiteness of the Fisher information matrix a resolution criterion is proposed which gives a tight lower limit on the minimum resolvable angle.
机译:开发了一种最大似然(ML)方法,用于基于数据协方差矩阵R逆矩阵的泰勒级数展开的泰勒级数展开来估计到达方向(DOA)和窄带信号的相关参数,其中M表示传感器中传感器的数量数组。因此,可以简化随机ML标准函数,从而得出用于DOA估计的高效计算算法。更重要的结果是在一般D源情况下所有未知DOA角的协方差矩阵的Cramer-Rao下界(CRB)的渐近(大M)表达式的推导。派生的界限明确表示为快照,信噪比(SNR),传感器,间隔以及信号源之间的相关性的函数。利用Fisher信息矩阵的正定性条件,提出了一种分辨率准则,该准则给出了最小可分辨角度的严格下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号