首页> 外文期刊>IEEE Transactions on Information Theory >Generation of matrices for determining minimum distance and decoding of algebraic-geometric codes
【24h】

Generation of matrices for determining minimum distance and decoding of algebraic-geometric codes

机译:确定最小距离的矩阵的生成和代数几何代码的解码

获取原文
获取原文并翻译 | 示例

摘要

Newton's identities have played a significant role in decoding and minimum distance determination of cyclic and BCH codes. The present paper carries the notion over from cyclic codes to algebraic-geometric (AG) codes and introduces Newton's identities for AG codes, also for the purpose of minimum distance determination and decoding.
机译:牛顿的身份在循环码和BCH码的解码和最小距离确定中发挥了重要作用。本文将概念从循环码扩展到代数几何(AG)码,并介绍了AG码的牛顿身份,同时也用于最小距离确定和解码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号