首页> 外文期刊>IEEE Transactions on Information Theory >Generation of matrices for determining minimum distance and decoding of cyclic codes
【24h】

Generation of matrices for determining minimum distance and decoding of cyclic codes

机译:确定最小距离的矩阵的生成和循环码的解码

获取原文
获取原文并翻译 | 示例

摘要

A simple method based on Newton's identities and their extensions is presented for determining the actual minimum distance of cyclic codes. More significantly, it is shown that this method also provides a mechanism for generating the type of syndrome matrices needed by Feng and Tzeng's (see ibid., vol.40, p.1364-1374, Sept. 1994) new procedure for decoding cyclic and BCH codes up to their actual minimum distance. Two procedures for generating such matrices are given. With these procedures, we have generated syndrome matrices having only one class of conjugate syndromes on the minor diagonal for all binary cyclic codes of length n>63 and many codes of length 63/spl les/spl les/99. A listing of such syndrome matrices for selected codes of length n>63 is included. An interesting connection of the method presented to the shifting technique of van Lint (1986) and Wilson is also noted.
机译:提出了一种基于牛顿身份及其扩展的简单方法,用于确定循环码的实际最小距离。更重要的是,表明该方法还提供了一种机制,用于生成Feng和Tzeng's所需的校正子矩阵类型(参见同上,第40卷,第1364-1374页,1994年9月),该方法用于循环和循环解码。 BCH编码到其实际最小距离。给出了两种生成这种矩阵的过程。通过这些过程,对于长度为n> 63的所有二进制循环码以及长度为63 / spl les / n / spl les / 99的许多代码,我们生成了在次对角线上仅具有一类共轭校正子的校正子矩阵。包括长度为n> 63的选定代码的此类校正子矩阵的列表。还指出了该方法与van Lint(1986)和Wilson的移位技术的有趣联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号