首页> 外文期刊>IEEE Transactions on Information Theory >Use of Grobner bases to decode binary cyclic codes up to the true minimum distance
【24h】

Use of Grobner bases to decode binary cyclic codes up to the true minimum distance

机译:使用Grobner基解码二进制循环码,直到真正的最小距离

获取原文
获取原文并翻译 | 示例

摘要

A general algebraic method for decoding all types of binary cyclic codes is presented. It is shown that such a method can correct t=[(d-1)/2] errors, where d is the true minimum distance of the given cyclic code. The key idea behind this decoding technique is a systematic application of the algorithmic procedures of Grobner bases to obtain the error-locator polynomial L(z). The discussion begins from a set of syndrome polynomials F and the ideal T(F) generated by F. It is proved here that the process of transforming F to the normalized reduced Grobner basis of I(F) with respect to the "purely lexicographical" ordering automatically converges to L(z). Furthermore, it is shown that L(z) can be derived from any normalized Grobner basis of I(F) with respect to any admissible total ordering. To illustrate this new approach, the procedures for decoding certain BCH codes and quadratic residue codes are demonstrated.
机译:提出了一种用于解码所有类型的二进制循环码的通用代数方法。结果表明,这种方法可以纠正t = [(d-1)/ 2]错误,其中d是给定循环码的真实最小距离。这种解码技术背后的关键思想是系统地应用Grobner基的算法过程来获得误差定位多项式L(z)。讨论从一组校正子多项式F和由F生成的理想T(F)开始。在此证明,相对于“纯词典”,将F转换为I(F)的归一化归约Grobner基的过程。排序自动收敛到L(z)。此外,它表明,对于任何允许的总排序,L(z)可以从I(F)的任何归一化Grobner基得出。为了说明这种新方法,演示了用于解码某些BCH码和二次残差码的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号