首页> 外文期刊>IEEE Transactions on Information Theory >Trellis decoding complexity of linear block codes
【24h】

Trellis decoding complexity of linear block codes

机译:线性块码的网格解码复杂度

获取原文
获取原文并翻译 | 示例

摘要

In this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimension/length profile (DLP) bounds. Codes meeting these bounds minimize all the complexity measures simultaneously; conversely, a code attaining the bound for total span length, vertices, or edges, must likewise attain it for all the others. We define a notion of "uniform" optimality that embraces different domains of optimization, such as different permutations of a code or different codes with the same parameters, and we give examples of uniformly optimal codes and permutations. We also give some conditions that identify certain cases when no code or permutation can meet the bounds. In addition to DLP-based bounds, we derive new inequalities relating one complexity measure to another, which can be used in conjunction with known bounds on one measure to imply bounds on the others. As an application, we infer new bounds on maximum state and edge complexity and on total vertices and edges from bounds on span lengths.
机译:在本部分教程中,我们研究了线性块代码的最小网格表示,并分析了网格复杂度的几种度量:最大状态和边缘尺寸,总跨度长度以及总顶点,边缘和合并。我们通过扩展众所周知的尺寸/长度轮廓(DLP)范围来获得这些复杂性的范围。满足这些限制的代码将所有复杂性度量同时最小化;相反,要获得跨度总长度,顶点或边的界限的代码必须同样为所有其他跨度获得该界限。我们定义了“统一”最优性的概念,该概念包含优化的不同领域,例如代码的不同排列或具有相同参数的不同代码,并给出了统一最优代码和排列的示例。我们还提供了一些条件,以识别没有代码或排列不能满足界限的某些情况。除了基于DLP的界限外,我们还得出了将一种复杂性度量与另一种复杂度量联系起来的新不等式,这些不等式可与一种度量的已知界限结合使用,以暗示其他度量的界限。作为应用程序,我们可以根据跨度长度的边界来推断最大状态和边的复杂度以及总顶点和边的新边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号