首页> 外文期刊>IEEE Transactions on Information Theory >On the expected value of the linear complexity and the k-error linear complexity of periodic sequences
【24h】

On the expected value of the linear complexity and the k-error linear complexity of periodic sequences

机译:关于周期序列的线性复杂度和k误差线性复杂度的期望值

获取原文
获取原文并翻译 | 示例

摘要

Rueppel (1986) conjectured that periodic binary sequences have expected linear complexity close to the period length N. In this paper, we determine the expected value of the linear complexity of N-periodic sequences explicitly and confirm Rueppel's conjecture for arbitrary finite fields. Cryptographically strong sequences should not only have a large linear complexity, but also the change of a few terms should not cause a significant decrease of the linear complexity. This requirement leads to the concept of the k-error linear complexity of N-periodic sequences. We present a method to establish a lower bound on the expected k-error linear complexity of N-periodic sequences based on the knowledge of the counting function /spl Nscr//sub N/,/sub 0/(c), i.e., the number of N-periodic sequences with given linear complexity c. For some cases, we give explicit formulas for that lower bound and we also determine /spl Nscr//sub N,0/(c).
机译:Rueppel(1986)推测周期二元序列的预期线性复杂度接近周期长度N。在本文中,我们明确确定了N周期序列的线性复杂度的预期值,并确定了Rueppel对任意有限域的猜想。加密强序列不仅应具有较大的线性复杂度,而且几项的变化也不应导致线性复杂度的显着降低。这一要求导致了N周期序列的k误差线性复杂度的概念。我们提出了一种基于计数函数/ spl Nscr // sub N /,/ sub 0 /(c)的知识来确定N周期序列的预期k误差线性复杂度下限的方法,即给定线性复杂度的N个周期序列的数量c。在某些情况下,我们为该下限给出明确的公式,并确定/ spl Nscr // sub N,0 /(c)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号