首页> 外文期刊>IEEE Transactions on Information Theory >Divergence Estimation of Continuous Distributions Based on Data-Dependent Partitions
【24h】

Divergence Estimation of Continuous Distributions Based on Data-Dependent Partitions

机译:基于数据相关分区的连续分布散度估计

获取原文
获取原文并翻译 | 示例

摘要

We present a universal estimator of the divergence$D(P,Vert,Q)$for two arbitrary continuous distributions$P$and$Q$satisfying certain regularity conditions. This algorithm, which observes independent and identically distributed (i.i.d.) samples from both$P$and$Q$, is based on the estimation of the Radon–Nikodym derivative$ d Pover d Q$via a data-dependent partition of the observation space. Strong convergence of this estimator is proved with an empirically equivalent segmentation of the space. This basic estimator is further improved by adaptive partitioning schemes and by bias correction. The application of the algorithms to data with memory is also investigated. In the simulations, we compare our estimators with the direct plug-in estimator and estimators based on other partitioning approaches. Experimental results show that our methods achieve the best convergence performance in most of the tested cases.
机译:我们给出了满足任意正则条件的两个任意连续分布$ P $和$ Q $的散度$ D(P,Vert,Q)$的通用估计量。该算法从$ P $和$ Q $观测独立且分布均匀的(iid)样本,该算法基于通过观测空间的数据相关分区对Radon-Nikodym导数d Pover d Q $的估计。空间的经验等效分割证明了该估计量的强收敛性。通过自适应分区方案和偏差校正,可以进一步改善此基本估算器。还研究了算法在具有存储器的数据中的应用。在仿真中,我们将估算器与直接插件估算器和基于其他划分方法的估算器进行比较。实验结果表明,我们的方法在大多数测试情况下均达到了最佳的收敛性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号