首页> 外文期刊>Signal Processing, IEEE Transactions on >Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications
【24h】

Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications

机译:互信息估计的非产品数据相关分区:强大的一致性和应用程序

获取原文
获取原文并翻译 | 示例

摘要

A new framework for histogram-based mutual information estimation of probability distributions equipped with density functions in $(BBR^{d},{cal B}(BBR^{d}))$ is presented in this work. A general histogram-based estimate is proposed, considering nonproduct data-dependent partitions, and sufficient conditions are stipulated to guarantee a strongly consistent estimate for mutual information. Two emblematic families of density-free strongly consistent estimates are derived from this result, one based on statistically equivalent blocks (the Gessaman's partition) and the other, on a tree-structured vector quantization scheme.
机译:在这项工作中,提出了一种新的框架,用于基于概率分布的直方图互信息估计,该概率分布具有$(BBR ^ {d},{cal B}(BBR ^ {d}))$中的密度函数。提出了一种基于直方图的通用估计,其中考虑了非产品数据相关分区,并规定了充分条件以保证相互信息的强一致性估计。从该结果中得出两个具有象征意义的无密度的高度一致估计值系列,一个基于统计等效块(Gessaman分区),另一个基于树结构矢量量化方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号