首页> 外文期刊>IEEE Transactions on Information Theory >On the scaling laws of dense wireless sensor networks: the data gathering channel
【24h】

On the scaling laws of dense wireless sensor networks: the data gathering channel

机译:关于密集无线传感器网络的缩放定律:数据收集通道

获取原文
获取原文并翻译 | 示例

摘要

We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as /spl Theta/(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks.
机译:我们考虑部署密集的无线传感器网络来观察任意随机场。要求是在某个收集器节点处重建随机字段的估计。这将创建多对一的数据收集无线通道。在本说明中,我们首先描述多对一密集无线网络的传输容量,该传输网络受到总平均功率的约束。特别地,我们显示出当传感器的数量N增长到无穷大且总平均功率保持固定时,传输能力按/ spl Theta /(log(N))缩放。然后,我们将此结果与一些信息理论工具一起使用,以得出足够的和必要的条件,这些条件表征了密集传感器网络可观测的随机场的集合。特别是,对于可以建模为离散随机序列的随机字段,我们得出某种形式的源/信道编码分离定理。我们进一步表明,通过由一维量化,分布式Slepian-Wolf源编码和建议的天线共享策略组成的方案,对于连续,高斯和空间带宽受限的字段,可以实现任何所需的非零均方估计误差。根据我们的结果,我们回顾了有关使用密集传感器网络进行数据收集应用的可行性的先前结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号