首页> 外文期刊>IEEE Transactions on Information Theory >On Optimal Quantization Rules for Some Problems in Sequential Decentralized Detection
【24h】

On Optimal Quantization Rules for Some Problems in Sequential Decentralized Detection

机译:顺序分散检测中若干问题的最优量化规则

获取原文
获取原文并翻译 | 示例

摘要

We consider the design of systems for sequential decentralized detection, a problem that entails several interdependent choices: the choice of a stopping rule (specifying the sample size), a global decision function (a choice between two competing hypotheses), and a set of quantization rules (the local decisions on the basis of which the global decision is made). This correspondence addresses an open problem of whether in the Bayesian formulation of sequential decentralized detection, optimal local decision functions can be found within the class of stationary rules. We develop an asymptotic approximation to the optimal cost of stationary quantization rules and exploit this approximation to show that stationary quantizers are not optimal in a broad class of settings. We also consider the class of blockwise-stationary quantizers, and show that asymptotically optimal quantizers are likelihood-based threshold rules.
机译:我们考虑进行顺序分散检测的系统设计,这个问题涉及几个相互依赖的选择:停止规则的选择(指定样本数量),全局决策函数(两个竞争假设之间的选择)和一组量化规则(根据本地决策制定全局决策)。这种对应解决了一个开放的问题,即在顺序分散检测的贝叶斯公式中,是否可以在平稳规则类别内找到最佳局部决策函数。我们开发了一种平稳量化规则的最优成本的渐近近似,并利用这种近似来表明平稳量化器在广泛的设置环境中不是最优的。我们还考虑了分块平稳量化器的类别,并证明渐近最优量化器是基于似然性的阈值规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号