首页> 外文期刊>Signal Processing, IEEE Transactions on >Quantization Effect on the Log-Likelihood Ratio and Its Application to Decentralized Sequential Detection
【24h】

Quantization Effect on the Log-Likelihood Ratio and Its Application to Decentralized Sequential Detection

机译:对数似然比的量化效应及其在分散顺序检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

It is well known that quantization cannot increase the Kullback–Leibler divergence which can be thought of as the expected value or first moment of the log-likelihood ratio. In this paper, we investigate the quantization effects on the second moment of the log-likelihood ratio. It is shown via the convex domination technique that quantization may result in an increase in the case of the second moment, but the increase is bounded above by $2/e$. The result is then applied to decentralized sequential detection problems not only to provide simpler sufficient conditions for asymptotic optimality theories in the simplest models, but also to shed new light on more complicated models. In addition, some brief remarks on other higher-order moments of the log-likelihood ratio are also provided.
机译:众所周知,量化不能增加Kullback-Leibler散度,可以将其视为对数似然比的期望值或第一矩。在本文中,我们研究了量化对数似然比的第二矩的影响。通过凸控制技术表明,量化可能会导致第二时刻的增加,但是该增加在上方受 $ 2 / e $的限制。 。然后将结果应用于分散的顺序检测问题,不仅为最简单的模型中的渐近最优理论提供了更简单的充分条件,而且为更复杂的模型提供了新的思路。此外,还提供了对数似然比的其他高阶矩的一些简短说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号