首页> 外文期刊>Information Theory, IEEE Transactions on >Joint Source–Channel Coding Excess Distortion Exponent for Some Memoryless Continuous-Alphabet Systems
【24h】

Joint Source–Channel Coding Excess Distortion Exponent for Some Memoryless Continuous-Alphabet Systems

机译:某些无记忆连续字母系统的联合源-通道编码过度失真指数

获取原文
获取原文并翻译 | 示例

摘要

We investigate the joint source–channel coding (JSCC) excess distortion exponent $E_J$ (the exponent of the probability of exceeding a prescribed distortion level) for some memoryless communication systems with continuous alphabets. We first establish upper and lower bounds for $E_J$ for systems consisting of a memoryless Gaussian source under the squared-error distortion fidelity criterion and a memoryless additive Gaussian noise channel with a quadratic power constraint at the channel input. A necessary and sufficient condition for which the two bounds coincide is provided, thus exactly determining the exponent. This condition is observed to hold for a wide range of source–channel parameters. As an application, we study the advantage in terms of the excess distortion exponent of JSCC over traditional tandem (separate) coding for Gaussian systems. A formula for the tandem exponent is derived in terms of the Gaussian source and Gaussian channel exponents, and numerical results show that JSCC often substantially outperforms tandem coding. The problem of transmitting memoryless Laplacian sources over the Gaussian channel under the magnitude-error distortion is also carried out. Finally, we establish a lower bound for $E_J$ for a certain class of continuous source–channel pairs when the distortion measure is a metric.
机译:我们研究了一些具有连续字母的无记忆通信系统的联合信源-信道编码(JSCC)过度失真指数$ E_J $(超过规定失真水平的概率的指数)。我们首先为系统建立$ E_J $的上限和下限,该系统由在平方误差失真保真度准则下的无记忆高斯源和在通道输入处具有二次功率约束的无记忆加性高斯噪声通道组成。提供两个边界重合的必要和充分条件,从而精确确定指数。观察到这种情况适用于广泛的源通道参数。作为一种应用,我们研究了JSCC相对于高斯系统的传统串联(单独)编码而言的过度失真指数的优势。根据高斯源指数和高斯通道指数推导了串联指数的公式,数值结果表明,JSCC通常明显优于串联编码。还发生了在幅度误差失真下通过高斯通道传输无记忆拉普拉斯源的问题。最后,当失真度量是度量时,我们为特定类别的连续源-信道对确定$ E_J $的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号