首页> 外文期刊>Information Theory, IEEE Transactions on >Exponential Bounds Implying Construction of Compressed Sensing Matrices, Error-Correcting Codes, and Neighborly Polytopes by Random Sampling
【24h】

Exponential Bounds Implying Construction of Compressed Sensing Matrices, Error-Correcting Codes, and Neighborly Polytopes by Random Sampling

机译:指数界意味着通过随机采样构造压缩感知矩阵,纠错码和邻近多面体

获取原文
获取原文并翻译 | 示例

摘要

In "Counting faces of randomly projected polytopes when the projection radically lowers dimension " the authors proved an asymptotic sampling theorem for sparse signals, showing that n random measurements permit to reconstruct an N-vector having k nonzeros provided n > 2 · k-log(N)(1 + o(1)) reconstruction uses ¿1 minimization. They also proved an asymptotic rate theorem, showing existence of real error-correcting codes for messages of length N which can correct all possible k-element error patterns using just n generalized checksum bits, where n > 2e · k log(N)(1 + o(1)) decoding uses ¿1 minimization. Both results require an asymptotic framework, with N growing large. For applications, on the other hand, we are concerned with specific triples k, n, N. We exhibit triples (k, n, N) for which Compressed Sensing Matrices and Real Error-Correcting Codes surely exist and can be obtained with high probability by random sampling. These derive from exponential bounds on the probability of drawing 'bad' matrices. The bounds give conditions effective at finite-N, and converging to the known sharp asymptotic conditions for large N. Compared to other finite-N bounds known to us, they are much stronger, and much more explicit. Our bounds derive from asymptotics in "Counting faces of randomly projected polytopes when the projection radically lowers dimension" counting the expected number of k-dimensional faces of the randomly projected simplex TN-1 and cross-polytope CN. We develop here finite-N bounds on the expected discrepancy between the number of k-faces of the projected polytope AQ and its generator Q, for Q = TN-1 and CN. Our bounds also imply existence of interesting geometric objects. Thus, we exhibit triples (k, n, N) for which polytopes with 2N vertices can be centrally k-neighborly.
机译:在“当投影从根本上降低维数时,对随机投影的多面体的面进行计数”中,作者证明了稀疏信号的渐近采样定理,表明n的随机测量允许重建具有k个非零的N向量,前提是n> 2à ·k-log(N / n)(1 + o(1))重建使用ƒÂ×1最小化。他们还证明了一个渐近速率定理,表明存在长度为N的消息的实际纠错码,该代码可以仅使用n个广义校验和位(其中n> 2eγ)纠正所有可能的k元素错误模式。 k log(N / n)(1 + o(1))解码使用ƒÂ¢Â¿1最小化。这两个结果都需要一个渐近框架,并且N逐渐变大。另一方面,对于应用程序,我们关心特定的三元组k,n,N。我们展示出三元组(k,n,N),对于这些三元组(k,n,N)肯定存在压缩传感矩阵和实际纠错码,并且可以很可能获得通过随机抽样。这些源自绘制“不良”矩阵的概率的指数边界。边界给出了在有限N时有效的条件,并且收敛于大N的已知的尖锐渐近条件。与我们已知的其他有限N边界相比,它们更强,更明确。我们的界限源自“计数当投影从根本上降低尺寸时随机投影的多面体的面”中的渐近性,它计算了随机投影的单纯形TN-1和交叉多面体CN的k维面的预期数量。对于Q = TN-1和CN,我们在这里针对投影多面体AQ的k面数量与其生成器Q之间的预期差异开发了有限N边界。我们的边界还意味着存在有趣的几何对象。因此,我们展示了三元组(k,n,N),具有2N个顶点的多边形可以在中心k处相邻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号