首页> 外文期刊>Information Theory, IEEE Transactions on >Density Evolution Analysis of Node-Based Verification-Based Algorithms in Compressed Sensing
【24h】

Density Evolution Analysis of Node-Based Verification-Based Algorithms in Compressed Sensing

机译:压缩感知中基于节点验证的算法密度演化分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension ${n}$). The asymptotic analysis predicts the fraction of unverified signal elements at each iteration ${ell}$ in the asymptotic regime where ${nrightarrowinfty}$. The analysis is similar in nature to the well-known density evolution technique commonly used to analyze iterative decoding algorithms. To perform the analysis, a message-passing interpretation of NB-VB algorithms is provided. This interpretation lacks the extrinsic nature of standard message-passing algorithms to which density evolution is usually applied. This requires a number of nontrivial modifications in the analysis. The analysis tracks the average performance of the recovery algorithms over the ensembles of input signals and sensing matrices as a function of ${ell}$. Concentration results are devised to demonstrate that the performance of the recovery algorithms applied to any choice of the input signal over any realization of the sensing matrix follows the deterministic results of the analysis closely. Simulation results are also provided which demonstrate that the proposed asymptotic analysis matches the performance of recovery algorithms for large but finite values of ${n}$ . Compared to the existing technique for the analysis of NB-VB algorithms, which is based on numerically solving a large system of coupled differential equations, the proposed method is more accurate and simpler to - mplement.
机译:在本文中,我们提出了一种新的方法,用于在压缩传感的情况下分析基于迭代节点的基于验证的(NB-VB)恢复算法。这些算法由于复杂度低(信号维数为$ {n} $呈线性)而特别有趣。渐进分析预测在$ {nrightarrowinfty} $渐近状态下,每次迭代$ {ell} $时未验证信号元素的比例。该分析在本质上类似于通常用于分析迭代解码算法的众所周知的密度演化技术。为了执行分析,提供了NB-VB算法的消息传递解释。这种解释缺乏通常应用密度演化的标准消息传递算法的外部性质。这需要在分析中进行许多不平凡的修改。该分析跟踪恢复算法在输入信号和感测矩阵整体上的平均性能,作为$ {ell} $的函数。设计了集中结果,以证明在传感矩阵的任何实现上应用于输入信号的任何选择的恢复算法的性能都紧随分析的确定性结果。还提供了仿真结果,它们表明所提出的渐近分析与$ {n} $大但有限值的恢复算法的性能匹配。与基于数值分析大型耦合微分方程组的现有NB-VB算法分析技术相比,该方法更加准确,易于实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号