【24h】

Codes for Write-Once Memories

机译:一次性写入代码

获取原文
获取原文并翻译 | 示例

摘要

A write-once memory (WOM) is a storage device that consists of cells that can take on $q$ values, with the added constraint that rewrites can only increase a cell's value. A length-$n$, $t$ -write WOM-code is a coding scheme that allows $t$ messages to be stored in $n$ cells. If on the $i$th write we write one of $M_{i}$ messages, then the rate of this write is the ratio of the number of written bits to the total number of cells, i.e., $log_{2}M_{i}$. The sum-rate of the WOM-code is the sum of all individual rates on all writes. A WOM-code is called a fixed-rate WOM-code if the rates on all writes are the same, and otherwise, it is called a variable-rate WOM-code. We address two different problems when analyzing the sum-rate of WOM-codes. In the first one, called the fixed-rate WOM-code problem, the sum-rate is analyzed over all fixed-rate WOM-codes, and in the second problem, called the unrestricted-rate WOM-code problem, the sum-rate is analyzed over all fixed-rate and variable-rate WOM-codes. In this paper, we first present a family of two-write WOM-codes. The construction is inspired by the coset coding scheme, which was used to construct multiple-write WOM-codes by Cohen and recently by Wu, in order to construct from each linear code a two-write WOM-code. This construction improves the best known sum-rates for the fixed- and unrestricted-rate WOM-code problems. We also show how to take advantage of two-write WOM-codes in order - o construct codes for the Blackwell channel. The two-write construction is generalized for two-write WOM-codes with $q$ levels per cell, which is used with ternary cells to construct three- and four-write binary WOM-codes. This construction is used recursively in order to generate a family of $t$-write WOM-codes for all $t$ . A further generalization of these $t$-write WOM-codes yields additional families of efficient WOM-codes. Finally, we show a recursive method that uses the previously constructed WOM-codes in order to construct fixed-rate WOM-codes. We conclude and show that the WOM-codes constructed here outperform all previously known WOM-codes for $2leqslant tleqslant 10$ for both the fixed- and unrestricted-rate WOM-code problems.
机译:一次写入存储器(WOM)是一种存储设备,由可以采用$ q $值的单元组成,并且附加的约束是重写只能增加单元的值。长度为$ n $,$ t $的WOM代码是一种编码方案,允许将$ t $消息存储在$ n $单元中。如果在$ i $ th次写入时,我们写入了$ M_ {i} $条消息之一,则写入率就是写入位数与单元总数之比,​​即$ log_ {2} M_ {i} / n $。 WOM代码的总和是所有写入的所有单独比率的总和。如果所有写入的速率相同,则将WOM代码称为固定速率WOM代码,否则将其称为可变速率WOM代码。当分析WOM代码的总和时,我们解决了两个不同的问题。在第一个问题中,称为固定速率WOM代码问题,对所有固定速率WOM代码进行求和速率分析;在第二个问题中,称为无限制速率WOM代码问题,即总速率对所有固定速率和可变速率WOM代码进行分析。在本文中,我们首先提出了一个两写的WOM代码家族。该构造的灵感来自于coset编码方案,该编码方案由Cohen和Wu最近用于构造多次写入的WOM代码,以便从每个线性代码构造两次写入的WOM代码。这种构造提高了固定速率和无限制速率WOM代码问题的最著名和速率。我们还将展示如何按顺序利用两次写入的WOM代码-构造用于Blackwell通道的代码。两次写入结构适用于每个单元具有$ q $级别的两次写入WOM代码,该结构与三元单元一起用于构造三次写入和四次写入的二进制WOM代码。递归使用此构造,以便为所有$ t $生成一系列$ t $ -write WOM代码。这些$ t $编写的WOM代码的进一步概括产生了更多的有效WOM代码系列。最后,我们展示了一种递归方法,该方法使用先前构造的WOM代码来构造固定速率的WOM代码。我们得出结论,表明在固定速率和无限制速率的WOM代码问题上,此处构造的WOM代码均优于$ 2leqslant tleqslant 10 $的所有先前已知的WOM代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号