首页> 外文期刊>IEEE Transactions on Information Theory >Nonasymptotic Upper Bounds for Deletion Correcting Codes
【24h】

Nonasymptotic Upper Bounds for Deletion Correcting Codes

机译:删除校正码的非渐近上界

获取原文
获取原文并翻译 | 示例

摘要

Explicit nonasymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for $q$-ary alphabet and string length $n$ is shown to be of size at most $ {{ q^{n}-q}over { (q-1)(n-1)}}$. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The nonasymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known nonasymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov–Tenengolts codes are the largest single-deletion correcting codes.
机译:给出了多删除校正码大小的显式非渐近上限。特别是,最大的 $ q $ -ary字母和字符串长度 $ n $ 显示为最大大小 $ {{q ^在{(q-1)(n-1)}} $ 上{n} -q}。推论得出渐近速率函数的一个改进的界。上限也针对受约束的源(不一定包含特定长度的所有字符串)的代码大小而得出,并且通过将其应用于游程长度受限的字符串集可以证明这一思想。查找最大删除校正码的问题被建模为超图上的匹配问题。该问题被表述为整数线性程序。通过为该整数线性程序的线性编程松弛的对偶构造可行点来获得上限。导出的非渐近界线暗示了Levenshtein和Tenengolts的已知渐近界线,并在已知的非渐近界线上进行了改进。数值结果支持这样的猜想:在二进制情况下,Varshamov-Tenengolts码是最大的单删除校正码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号