首页> 外文期刊>Information Theory, IEEE Transactions on >An Improvement to Levenshtein's Upper Bound on the Cardinality of Deletion Correcting Codes
【24h】

An Improvement to Levenshtein's Upper Bound on the Cardinality of Deletion Correcting Codes

机译:Levenshtein删除校正码基数上界的改进

获取原文
获取原文并翻译 | 示例

摘要

We consider deletion correcting codes over a (q) -ary alphabet. It is well known that any code capable of correcting (s) deletions can also correct any combination of (s) total insertions and deletions. To obtain asymptotic upper bounds on code size, we apply a packing argument to channels that perform different mixtures of insertions and deletions. Even though the set of codes is identical for all of these channels, the bounds that we obtain vary. Prior to this paper, only the bounds corresponding to the all-insertion case and the all-deletion case were known. We recover these as special cases. The bound from the all-deletion case, due to Levenshtein, has been the best known for more than 45 years. Our generalized bound is better than Levenshtein's bound whenever the number of deletions to be corrected is larger than the alphabet size.
机译:我们考虑在(q)个字母上的删除纠正代码。众所周知,任何能够纠正删除的代码也可以纠正全部插入和删除的任何组合。为了获得代码大小的渐近上限,我们将装箱参数应用于执行插入和删除操作不同混合的通道。即使所有这些通道的代码集都是相同的,我们获得的界限也有所不同。在此之前,仅知道与全插入情况和全删除情况相对应的边界。我们将这些作为特殊情况恢复。莱文施泰因(Levenshtein)导致的全删除案的界线已超过45年了。只要要纠正的删除数目大于字母的大小,我们的广义边界就会比Levenshtein的边界更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号