首页> 外文期刊>Information Theory, IEEE Transactions on >Asymptotic Frequency-Shift Properizer for Block Processing of Improper-Complex Second-Order Cyclostationary Random Processes
【24h】

Asymptotic Frequency-Shift Properizer for Block Processing of Improper-Complex Second-Order Cyclostationary Random Processes

机译:不复杂二阶循环平稳随机过程块处理的渐近移频性质

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the block processing of a discrete-time (DT) improper-complex second-order cyclostationary (SOCS) random process is considered. In particular, it is of interest to find a preprocessing operation that enables the adoption of conventional signal processing techniques and algorithms developed for the filtering of proper-complex signals and that leads to computationally efficient near-optimal postprocessing. An invertible linear-conjugate linear (LCL) operator named the DT frequency shift (FRESH) properizer is first proposed. It is shown that the DT FRESH properizer converts a DT improper-complex SOCS random process input to an equivalent DT proper-complex SOCS random process output by utilizing the information only about the cycle period of the input. An invertible LCL block processing operator named the asymptotic FRESH properizer is then proposed that mimics the operation of the DT FRESH properizer but processes a finite number of consecutive samples of a DT improper-complex SOCS random process. It is shown that the output of the asymptotic FRESH properizer is not proper but asymptotically proper and that its frequency-domain covariance matrix converges to a highly structured block matrix with diagonal blocks as the block size tends to infinity. Two representative estimation and detection problems are presented to demonstrate that asymptotically optimal low-complexity postprocessors can be easily designed by exploiting these asymptotic second-order properties of the output of the asymptotic FRESH properizer.
机译:本文考虑了离散时间(DT)不复杂的二阶循环平稳(SOCS)随机过程的块处理。特别地,寻找一种预处理操作是令人感兴趣的,该预处理操作能够采用传统的信号处理技术和开发用于滤波适当复数信号的算法,并导致计算效率高的近最佳后处理。首先提出了一种称为DT频移(FRESH)归一化器的可逆线性共轭线性(LCL)运算符。结果表明,DT FRESH调整器通过仅利用有关输入周期的信息将DT不复杂的SOCS随机过程输入转换为等效的DT复杂的SOCS随机过程输出。然后,提出了一种称为渐近FRESH矫正器的可逆LCL块处理算子,该算子模仿DT FRESH矫正器的操作,但处理了DT不当复杂SOCS随机过程的有限数量的连续样本。结果表明,渐近FRESH校正器的输出不合适,但渐近适当,并且随着块大小趋于无穷大,其频域协方差矩阵收敛到具有对角块的高度结构化的块矩阵。提出了两个代表性的估计和检测问题,以证明通过利用渐近FRESH校正器输出的这些渐近二阶性质,可以轻松设计渐近最优的低复杂度后处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号