首页> 外文期刊>Information Theory, IEEE Transactions on >Minimax Estimation of Discrete Distributions Under $ell _{1}$ Loss
【24h】

Minimax Estimation of Discrete Distributions Under $ell _{1}$ Loss

机译: $ ell _ {1} $ 损失下的离散分布的极小极大估计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of discrete distribution estimation under loss. We provide tight upper and lower bounds on the maximum risk of the empirical distribution (the maximum likelihood estimator), and the minimax risk in regimes where the support size may grow with the number of observations . We show that among distributions with bounded entropy , the asymptotic maximum risk for the empirical distribution is , while the asymptotic minimax risk is . Moreover, we show that a hard-thresholding estimator oblivious to the unknown upper bound , is essentially minimax. However, if we constrain the estimates to lie in the simplex of probability distributions, then the asymptotic minimax risk is again . We draw connections between our work and the literature on density estimation, entropy estimation, total variation distance ( divergence) estimation, joint distribution estimation in stochastic processes, normal mean estimation, and adaptive estimation.
机译:我们考虑了损失下离散分布估计的问题。我们提供了经验分布的最大风险(最大似然估计)以及在支持规模可能随观察数增加而增长的制度中的最小最大风险的严格上限和下限。我们表明,在有界熵的分布中,经验分布的渐近最大风险为,而渐近最小最大风险为。此外,我们证明了忽略未知上限的硬阈值估计量本质上是极大极小。但是,如果我们将估计约束在概率分布的单纯形中,则渐近最小极大风险再次出现。我们在文献和工作之间建立了联系,包括密度估计,熵估计,总变化距离(散度)估计,随机过程中的联合分布估计,正态均值估计和自适应估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号