首页> 外文期刊>Information Theory, IEEE Transactions on >Interactive Computation of Type-Threshold Functions in Collocated Gaussian Networks
【24h】

Interactive Computation of Type-Threshold Functions in Collocated Gaussian Networks

机译:并置高斯网络中类型阈值函数的交互式计算

获取原文
获取原文并翻译 | 示例

摘要

In wireless sensor networks, various applications involve learning one or multiple functions of the measurements observed by sensors, rather than the measurements themselves. This paper focuses on the class of type-threshold functions, e.g., the maximum and the indicator functions. A simple network model capturing both the broadcast and superposition properties of wireless channels is considered: the collocated Gaussian network. A general multiround coding scheme exploiting superposition and interaction (through broadcast) is developed. Through careful scheduling of concurrent transmissions to reduce redundancy, it is shown that given any independent measurement distribution, all type-threshold functions can be computed reliably with a nonvanishing rate in the collocated Gaussian network, even if the number of sensors tends to infinity.
机译:在无线传感器网络中,各种应用都涉及学习传感器观测到的测量的一项或多项功能,而不是学习测量本身。本文重点介绍类型阈值函数的类别,例如最大值和指标函数。考虑一种同时捕获无线信道的广播和叠加属性的简单网络模型:并置的高斯网络。开发了一种利用叠加和交互(通过广播)的通用多轮编码方案。通过仔细调度并发传输以减少冗余,结果表明,在给定任何独立的测量分布的情况下,即使传感器的数量趋于无穷大,在并置的高斯网络中,所有类型阈值函数都可以以不消失的速率可靠地进行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号