首页> 外文期刊>Information Theory, IEEE Transactions on >Interactive Source Coding for Function Computation in Collocated Networks
【24h】

Interactive Source Coding for Function Computation in Collocated Networks

机译:并置网络中用于功能计算的交互式源编码

获取原文
获取原文并翻译 | 示例

摘要

A problem of interactive function computation in a collocated network is studied in a distributed block source coding framework. With the goal of computing samples of a desired function of sources at the sink, the source nodes exchange messages through a sequence of error-free broadcasts. For any function of independent sources, a computable characterization of the set of all feasible message coding rates—the rate region—is derived in terms of single-letter information measures. In the limit as the number of messages tends to infinity, the infinite-message minimum sum rate, viewed as a functional of the joint source probability mass function, is characterized as the least element of a partially ordered family of functionals having certain convex-geometric properties. This characterization leads to a family of lower bounds for the infinite-message minimum sum rate and a simple criterion to test the optimality of any achievable infinite-message sum rate. An iterative algorithm for evaluating the infinite-message minimum sum-rate functional is proposed and is demonstrated through an example of computing the minimum function of three Bernoulli sources. Based on the characterizations of the rate regions, it is shown that when computing symmetric functions of binary sources, the sink will inevitably learn certain additional information that is not demanded in computing the function. This conceptual understanding leads to new improved bounds for the minimum sum rate. The new bounds are shown to be orderwise better than those based on cut-sets as the network scales. The scaling law of the minimum sum rate is explored for different classes of symmetric functions and source parameters.
机译:在分布式块源编码框架中研究了并置网络中交互功能计算的问题。为了在宿处计算源的期望功能的样本,源节点通过一系列无错误的广播来交换消息。对于独立来源的任何功能,所有可行消息编码率的集合(速率区域)的可计算特征都是根据单字母信息度量得出的。在消息数量趋于无穷大的极限中,被视为联合源概率质量函数的函数的无限消息最小总和率被表征为具有某些凸几何的部分有序函数族的最小元素属性。这种表征导致了无限消息最小和率的下界族和测试任何可实现的无限消息和率的最优性的简单准则。提出了一种评估无限消息最小和速率函数的迭代算法,并通过计算三个伯努利源的最小函数的示例进行了演示。基于速率区域的特征,表明在计算二进制源的对称函数时,接收器将不可避免地学习某些在计算函数时不需要的附加信息。这种概念上的理解为最小和率带来了新的改进界限。随着网络规模的扩大,新边界显示出比基于割集的边界更好的有序排列。探索了不同类别的对称函数和源参数的最小总和率的缩放定律。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号