首页> 外文期刊>IEEE Transactions on Information Theory >Global and Local Information in Clustering Labeled Block Models
【24h】

Global and Local Information in Clustering Labeled Block Models

机译:聚类标记块模型中的全局和局部信息

获取原文
获取原文并翻译 | 示例

摘要

The stochastic block model is a classical cluster exhibiting random graph model that has been widely studied in statistics, physics, and computer science. In its simplest form, the model is a random graph with two equal-sized clusters, with intracluster edge probability p, and intercluster edge probability q. We focus on the sparse case, i.e., p, q = O(1), which is practically more relevant and also mathematically more challenging. A conjecture of Decelle, Krzakala, Moore, and Zdeborová, based on ideas from statistical physics, predicted a specific threshold for clustering. The negative direction of the conjecture was proved by Mossel, Neeman, and Sly (2012), and more recently, the positive direction was independently proved by Massoulié and Mossel, Neeman, and Sly. In many real network clustering problems, nodes contain information as well. We study the interplay between node and network information in clustering by studying a labeled block model, where in addition to the edge information, the true cluster labels of a small fraction of the nodes are revealed. In the case of two clusters, we show that below the threshold, a small amount of node information does not affect recovery. On the other hand, we show that for any small amount of information, efficient local clustering is achievable as long as the number of clusters is sufficiently large (as a function of the amount of revealed information).
机译:随机块模型是展示随机图模型的经典集群,该模型已在统计学,物理学和计算机科学中得到广泛研究。以其最简单的形式,该模型是具有两个相等大小的群集的随机图,群集内部边缘概率为p,群集间边缘概率为q。我们将重点放在稀疏情况下,即p,q = O(1 / n),这在实际上更相关,在数学上也更具挑战性。根据统计物理学的思想,Decelle,Krzakala,Moore和Zdeborova的猜想预测了聚类的特定阈值。猜想的否定方向由Mossel,Neeman和Sly(2012)证明,最近,积极的方向由Massoulie,Mossel,Neeman和Sly独立地证明。在许多实际的网络群集问题中,节点也包含信息。我们通过研究标记的块模型来研究集群中节点和网络信息之间的相互作用,该模型中除了边缘信息之外,还揭示了一小部分节点的真实集群标签。在两个群集的情况下,我们表明在阈值以下,少量节点信息不会影响恢复。另一方面,我们表明,对于任何少量的信息,只要簇的数量足够大(取决于显示的信息量),就可以实现有效的局部聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号