首页> 外文期刊>IEEE Transactions on Information Theory >Identifiability in Blind Deconvolution With Subspace or Sparsity Constraints
【24h】

Identifiability in Blind Deconvolution With Subspace or Sparsity Constraints

机译:具有子空间或稀疏约束的盲反卷积中的可识别性

获取原文
获取原文并翻译 | 示例

摘要

Blind deconvolution (BD), the resolution of a signal and a filter given their convolution, arises in many applications. Without further constraints, BD is ill-posed. In practice, subspace or sparsity constraints have been imposed to reduce the search space, and have shown some empirical success. However, the existing theoretical analysis on uniqueness in BD is rather limited. In an effort to address the still open question, we derive sufficient conditions under which two vectors can be uniquely identified from their circular convolution, subject to subspace or sparsity constraints. These sufficient conditions provide the first algebraic sample complexities for BD. We first derive a sufficient condition that applies to almost all bases or frames. For BD of vectors in ℂn, with two subspace constraints of dimensions m1 and m2, the required sample complexity is n ≥ m1m2. Then, we impose a sub-band structure on one basis, and derive a sufficient condition that involves a relaxed sample complexity n≥ m1+m2-1, which we show to be optimal. We present the extensions of these results to BD with sparsity constraints or mixed constraints, with the sparsity level replacing the subspace dimension. The cost for the unknown support in this case is an extra factor of 2 in the sample complexity.
机译:盲反卷积(BD)是信号和滤波器的卷积,在许多应用中都应运而生。没有进一步的限制,BD会不适。在实践中,已经施加了子空间或稀疏约束来减小搜索空间,并且已经显示出一些经验上的成功。但是,关于BD唯一性的现有理论分析相当有限。为了解决仍然悬而未决的问题,我们得出了充分的条件,在这种条件下,可以根据子空间或稀疏性约束,从两个向量的圆形卷积中唯一地标识出两个向量。这些充分的条件为BD提供了第一个代数样本复杂度。我们首先得出一个适用于几乎所有碱基或框架的充分条件。对于ℂn中的向量BD,具有两个子空间约束,分别为维度m1和m2,所需的样本复杂度为n≥m1m2。然后,我们在一个基础上强加一个子带结构,并得出一个满足条件,该条件涉及松弛的样本复杂度n≥m1 + m2-1,我们证明这是最佳的。我们将这些结果扩展到具有稀疏约束或混合约束的BD,用稀疏级别替换子空间维。在这种情况下,未知支持的成本会使样本复杂度增加2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号