首页> 外文期刊>Information Theory, IEEE Transactions on >Matrix Completion With Column Manipulation: Near-Optimal Sample-Robustness-Rank Tradeoffs
【24h】

Matrix Completion With Column Manipulation: Near-Optimal Sample-Robustness-Rank Tradeoffs

机译:色谱柱处理的矩阵完成:接近最佳的样品稳健性和等级权衡

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of matrix completion when some number of the columns are completely and arbitrarily corrupted, potentially by a malicious adversary. It is well known that standard algorithms for matrix completion can return arbitrarily poor results, if even a single column is corrupted. One direct application comes from robust collaborative filtering. Here, some number of users are so-called manipulators who try to skew the predictions of the algorithm by calibrating their inputs to the system. In this paper, we develop an efficient algorithm for this problem based on a combination of a trimming procedure and a convex program that minimizes the nuclear norm and the norm. Our theoretical results show that given a vanishing fraction of observed entries, it is nevertheless possible to complete the underlying matrix even when the number of corrupted columns grows. Significantly, our results hold without any assumptions on the locations or values of the observed entries of the manipulated columns. Moreover, we show by an information-theoretic argument that our guarantees are nearly optimal in terms of the fraction of sampled entries on the authentic columns, the fraction of corrupted columns, and the rank of the underlying matrix. Our results therefore sharply characterize the tradeoffs between sample, robustness, and rank in matrix completion.
机译:本文考虑了当某些列被恶意对手完全完全任意破坏时矩阵完成的问题。众所周知,即使单列损坏,用于矩阵完成的标准算法也会返回任意差的结果。一种直接的应用来自强大的协作过滤。在这里,一些用户是所谓的操纵器,他们试图通过校准他们对系统的输入来歪曲算法的预测。在本文中,我们基于微调程序和凸程序的组合开发了针对该问题的有效算法,该程序使核规范和规范最小化。我们的理论结果表明,在观察到的条目消失的情况下,即使损坏的列数增加,也有可能完成基础矩阵。值得一提的是,我们的结果没有对所操纵列的观察条目的位置或值进行任何假设。此外,我们通过信息理论论证表明,就真实列中的采样条目比例,损坏列的比例以及基础矩阵的等级而言,我们的保证几乎是最优的。因此,我们的结果清晰地描述了样本,稳健性和矩阵完成度之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号