首页> 外文期刊>IEEE Transactions on Information Theory >Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions
【24h】

Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions

机译:等距符号-对代码:下界和最佳构造

获取原文
获取原文并翻译 | 示例

摘要

Symbol-pair codes introduced by Cassuto and Blaum (2010) are designed to protect against pair errors in symbol-pair read channels. The higher the minimum pair distance, the more pair errors the code can correct. Maximum distance separable (MDS) symbol-pair codes are optimal in the sense that pair distance cannot be improved for given length and code size. The contribution of this paper is twofold. First, we present three lower bounds for the minimum pair distance of constacyclic codes, the first two of which generalize the previously known results due to Cassuto and Blaum (2011) and Kai et al. (2015). The third one exhibits a lower bound for the minimum pair distance of repeated-root cyclic codes. Second, we obtain new MDS symbol-pair codes with minimum pair distance seven and eight through repeated-root cyclic codes.
机译:Cassuto和Blaum(2010)引入的符号对代码旨在防止符号对读取通道中的配对错误。最小配对距离越大,代码可以纠正的配对错误就越多。最大距离可分离(MDS)符号对代码是最佳的,因为对于给定的长度和代码大小,无法提高对距离。本文的贡献是双重的。首先,我们给出了恒定码最小对距离的三个下界,其中前两个归纳了Cassuto和Blaum(2011)以及Kai等人的先前已知结果。 (2015)。第三个对重复根循环码的最小配对距离表现出一个下限。其次,我们通过重复根循环码获得最小对距离为7和8的新MDS符号对码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号