首页> 外文期刊>Information Theory, IEEE Transactions on >The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization
【24h】

The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization

机译:离散Dantzig选择器:通过混合整数线性优化估计稀疏线性模型

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel high-dimensional linear regression estimator: the Discrete Dantzig Selector, which minimizes the number of nonzero regression coefficients subject to a budget on the maximal absolute correlation between the features and residuals. Motivated by the significant advances in integer optimization over the past 10-15 years, we present a mixed integer linear optimization (MILO) approach to obtain certifiably optimal global solutions to this nonconvex optimization problem. The current state of algorithmics in integer optimization makes our proposal substantially more computationally attractive than the least squares subset selection framework based on integer quadratic optimization, recently proposed by Bertsimas et al. and the continuous nonconvex quadratic optimization framework of Liu et al.. We propose new discrete first-order methods, which when paired with the state-of-the-art MILO solvers, lead to good solutions for the Discrete Dantzig Selector problem for a given computational budget. We illustrate that our integrated approach provides globally optimal solutions in significantly shorter computation times, when compared to off-the-shelf MILO solvers. We demonstrate both theoretically and empirically that in a wide range of regimes the statistical properties of the Discrete Dantzig Selector are superior to those of popular ℓ1-based approaches. We illustrate that our approach can handle problem instances with p = 10,000 features with certifiable optimality making it a highly scalable combinatorial variable selection approach in sparse linear modeling.
机译:我们提出了一种新颖的高维线性回归估计器:离散Dantzig选择器,该函数将非零回归系数的数量最小化,该非零回归系数的数量受特征和残差之间最大绝对相关的预算影响。基于过去10-15年中整数优化的重大进步,我们提出了一种混合整数线性优化(MILO)方法来获得针对该非凸优化问题的可证明最优的全局解决方案。整数优化中算法的当前状态使我们的提议在计算上比基于Bertsimas等人最近提出的基于整数二次优化的最小二乘子集选择框架更具吸引力。以及Liu等人的连续非凸二次优化框架。我们提出了新的离散一阶方法,该方法与最新的MILO求解器配合使用,可以为给定的离散Dantzig选择器问题提供良好的解决方案计算预算。我们说明,与现成的MILO解算器相比,我们的集成方法可在更短的计算时间内提供全局最佳解决方案。我们在理论和经验上都证明,在广泛的范围内,离散Dantzig选择器的统计特性要优于基于ℓ1的流行方法。我们说明了我们的方法可以处理具有p = 10,000个特征的问题实例,并且具有可证明的最优性,这使其成为稀疏线性建模中高度可扩展的组合变量选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号